2021 M.Sc. First Semester CORE – 02 MATHEMATICS Course Code: MMAC 1.21 (Linear Algebra)

Total Mark: 70 Time: 3 hours Answer five questions taking one from each Unit. Pass Mark: 28

7

UNIT-I

- 1. (a) Prove that a non-empty subset W of a vector space V over the field F is a subspace of V if and only if for each pair of vectors $u, v \in W$ and each scalar $\alpha \in F$, the vector $au + v \in W$. 7
 - (b) If $T \in \mathcal{L}(V, W)$, define *null* T with an example. Prove that T is injective if and only if *null* T = 0. 7
- 2. (a) Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other. 7
 - (b) Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that $\dim V = \dim null T + \dim range T$

UNIT-II

- 3. (a) Suppose *V* is finite dimensional and $T \in \mathcal{L}(V)$. Prove that the following are equivalent:
 - (i) *T* is invertible
 - (ii) *T* is injective
 - (iii) T is surjective
 - (b) If $T \in \mathcal{L}(V)$, prove that the zeros of the minimal polynomial of *T* are precisely the eigenvalues of *T*. 7

- 4. (a) Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \lambda_2, ..., \lambda_m$ are distinct eigenvalues of *T* and $v_1, v_2, ..., v_m$ are corresponding eigen vectors. Prove that $v_1, v_2, ..., v_m$ are linearly independent. 6
 - (b) Suppose $S, T \in \mathcal{L}(V)$ and S is invertible. Prove that if

$$p \in \mathcal{P}(F)$$
 is a polynomial, then $p(STS^{-1}) = Sp(T)S^{-1}$. 4

(c) Suppose $T \in \mathcal{L}(\mathbb{C}^3)$ is defined by $T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$. Find the eigenvalues of T and the corresponding generalized eigenspaces of T. 4

UNIT-III

- 5. (a) Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Prove that *null S* and *range S* are invariant under *T*.
 - (b) If *V* is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$, then prove that *T* has an upper-triangular matrix with respect to some basis of *V*. 6

(c) If
$$T \in \mathcal{L}(V)$$
 and $\lambda \in F$, then prove that

$$G(\lambda,T) = null (T - \lambda I)^{\dim V}.$$
4

6

6. (a) Suppose $N \in \mathcal{L}(V)$ is nilpotent, then prove that I + N has a square root.

(b) If $N \in \mathcal{L}(V)$ is nilpotent, prove that there exist vectors

 $v_1, v_2, ..., v_n \in V$ and non-negative integers $m_1, m_2, ..., m_n$ such that

(i) $N^{m_1}(v_1), ..., N(v_1), v_1, ..., N^{m_n}(v_n), ..., N(v_n), v_n$ is a basis of V

(ii)
$$N^{m_1+1}(v_1) = \dots = N^{m_n+1}(v_n) = 0.$$
 8

UNIT-IV

- 7. (a) State and prove the Cauchy-Schwarz inequality. 4
 - (b) Find an orthonormal basis of $\mathcal{P}_2(\mathbb{R})$, where the inner product is

given by
$$\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx$$
. 6

(c) If U is a finite-dimensional subspace of a vector space V, then prove that $V = U \oplus U^{\perp}$.

8. (a) Explain the Gram-Schmidt procedure. 7
(b) Find
$$u \in \mathcal{P}_2(\mathbb{R})$$
 such that $\int_{-1}^{1} p(t) \cos(\pi t) dt = \int_{-1}^{1} p(t) u(t) dt$ for every $p \in \mathcal{P}_2(\mathbb{R})$. 4

(c) Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by $T(x_1, x_2, x_3) = (x_2 + 3x_3, 2x_1)$. Find a formula for T^* .

UNIT-V

9. (a) Define a map $B: \mathcal{P}_3(\mathbb{R}) \times \mathcal{P}_3(\mathbb{R}) \to \mathbb{R}$ given by

$$B(p(x),q(x)) = \int_{0}^{1} p(t)q(t)dt$$
. Show that B is bilinear.

Determine the matrix of B relative to ordered basis $1, x, x^2, x^3$ of $\mathcal{P}_3(\mathbb{R})$.

- (b) Prove that every eigenvalue of a self-adjoint operator is real. 4
- (c) Let V be a vector space of dimension n over F and Bil(V) be the set of all bilinear forms on V. Define addition and scalar multiplication in Bil(V) as follows.

$$(B_1 + B_2)(x, y) = B_1(x, y) + B_2(x, y)$$

$$(\alpha B_1)(x, y) = \alpha B_1(x, y)$$

for all $B_1, B_2 \in Bil(V), \alpha \in F, x, y \in V$. Prove that $Bil(V)$ is a
vector space of dimension n^2 over F .

10. (a) An operator
$$T \in \mathcal{L}(V)$$
 is normal if and only if
 $\|T(v)\| = \|T^*(v)\|.$
5

- (b) If *B* is a symmetric bilinear form on a finite-dimensional vector space *V* over *F* and if $e_1, e_2, ..., e_n$ is any orthonormal basis of *V*, then prove that the number of e_i 's such that $B(e_i, e_i) = 0$ is equal to the dimension of V^{\perp} .
- (c) Let *V* be the vector space of all continuous complex-valued functions on the interval $-\pi \le x \le \pi$. Define $H: V \times V \to \mathbb{C}$ by

$$H(f,g) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt \text{ for all } f,g \in V. \text{ Show that } H \text{ is a}$$

positive definite Hermitian form.