2021

B.A./B.Sc.

Fifth Semester

Discipline Specific Elective – 2

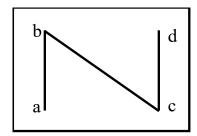
MATHEMATICS

Course Code: MAD 5.21

(Boolean Algebra & Automata Theory)

Total Mark: 70 Pass Mark: 28

Time: 3 hours


Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Prove that two finite ordered sets *P* and *Q* are order isomorphisms iff they can be drawn with identical diagram.
 - (b) Draw the diagram of 2^4 and $M_3 \oplus M_4$

3+2=5

- (c) Define order preserving and order embedding map with examples. Let $\varphi: P \to Q$ and $\psi: Q \to R$ be order preserving maps. Show that the composite map $\psi \circ \varphi$ given by $(\psi \circ \varphi)x = \psi(\varphi(x))$ for $x \in P$ is also order preserving map. 2+3=5
- 2. (a) Draw and label a diagram of the order sets Q(P) of down sets for the ordered set P given by the diagram 4

(b) Define lattices. Draw Hasse diagram of all lattices with six elements.

1+4=5

(c) Let (L, \land, \lor) be non-empty set equipped with two binary operations which satisfy the axioms of join and meet. Then 5

- (i) Prove that $\forall a, b \in L$ we've $a \lor b = b$ iff $a \land b = a$
- (ii) Define \leq on L by $a \leq b$ if $a \vee b = b$ and prove that \leq is ordered relation.

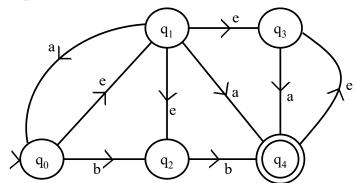
UNIT-II

- 3. (a) Prove that a lattice L is distributive iff cancelation rule holds.
 - (b) In a Boolean algebra B, show that $\forall x, y \in B$

$$x \le y \Leftrightarrow x' \ge y' \Leftrightarrow x \land y' = 0 \Leftrightarrow$$

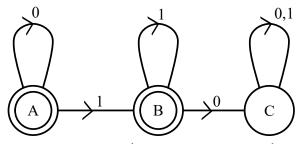
 $x' \lor y = 1 \Leftrightarrow x \land y = x \Leftrightarrow x \lor y = y$

- (c) Simplify the following Boolean polynomial to normal form.
 - (i) xy + x'y + xy'
 - (ii) x(y+z)' + (xy+z')x
 - (iii) $\left(x + \left(x' + xy'\right)'\right)'$
 - (iv) xy + yz + zx
- 4. (a) Minimize the xyz' + x'yz' + (x' + y'z')'(x + y + z')' + x(y + z)' using K-map and draw the contact diagram.
 - (b) Using Quine-McCluskey method minimize the Boolean polynomial $p = \sum (0,5,8,9,10,11,14,15)$.
 - (c) A motor is supplied by three generators where operation of each generator is monitored. Design a switching circuit to obtain the outputs satisfying the following conditions:
 - (i) A warning lamp lights up if one or two generator fails
 - (ii) An acoustic alarm is initiated if two or all three generators fails


5

UNIT-III

- 5. (a) Define a regular expression.
 - (b) Find the regular expression and construct the finite automaton for the formal language 4
 - (i) $L = \{w \in \{a,b\}^* : ab \text{ is a substring of } w\}$


- (ii) $L = \{w \in \{a, b\}^* : a \text{ and } b \text{ occur even number of times in } w\}$
- (c) Design a non-deterministic finite automaton (NFA) that accepts strings over $\{a,b\}$ * which contains a substring aa or bb.
- (d) Convert the given non-deterministic finite automata (NFA) to its equivalent deterministic finite automata (DFA).

5

- 6. (a) Show that intersection of two regular language is also regular. 4
 - (b) Find the regular expression for the language accepted by the deterministic finite automata (DFA)

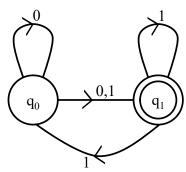
 5

(c) Show that $L = \{a^p : p \text{ is a prime}\}$ is not regular language. 5

UNIT-IV

7. (a) Define regular context free grammar. Construct an NFA for the context free grammar (CFG) given by $V = \{S, A, B, a, b\}; \sum \{a, b\}$

$$R = \{S \to bA; S \to aB; A \to abaS; B \to babS; S \to e\}$$
 2+3=5


- (b) Construct a push down automata (PDA) that accepts the language $L = \left\{ wcw^R : w \in \{a,b\} * \right\}$ 5
- (c) Show that $L = \{ww : w \in \{a,b\}^*\}$ is not context free language (CFL).

- 8. (a) Show that a CFL is not closed under intersection. Also show that intersection of CFL and a regular language is a CFL. 2+3=5
 - (b) Show that CFG $G = (V, \Sigma, R, S)$ where

$$V = \{S, a, b, +, *\}, \Sigma = \{a, b, +, *\}, S = S$$
, and

 $R = \{S \rightarrow S + S; S \rightarrow S * S; S \rightarrow a; S \rightarrow b\}$ is ambiguous grammar.

(c) Determine an equivalent PDA for the NFA given by the diagram 5

UNIT-V

- 9. (a) Construct a Turing machine which compute the successor function. 4
 - (b) Define the Universal Turing Machine.

(c) Let $L = \{w : aa \text{ is not a substring}\}$. Construct a Turing machine which accept the given language.

- (d) Design Turing machine which accepts $L = \{a^n b^n c^n : n \ge 0\}$.
- 10. (a) Define a machine schema. Also draw the copying machine and the right shifting standard machine. 1+4=5
 - (b) Differentiate between recursive language and recursively enumerable language. Prove that compliment of recursive language is recursive.

2+4=6

4

1

(c) Find a post correspondence solution for the given list M = (110,0011,0110) and N = (110110,00,110).
