2021 B.A./B.Sc. Fifth Semester DSE – 1 PHYSICS Course Code: PHD 5.11 (Classical Dynamics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	State and prove the D'Alembert's principle.	2+5=7		
	(b)	Derive the Lagrange equations from D'Alembert's principle.	7		
2.	(a)	Formulate the Lagrange's equation of motion for a linear harm	ear harmonic		
		oscillator and calculate the frequency of oscillation.	5+1=6		

(b) A massless rod is hinged at the extremity of a vertical spring that is fixed to the ground. Find the equation of motion of a harmonic system by formulating its Lagrangian if a mass point rest on the rod.

8

UNIT-II

- 3. (a) State and deduce the Hamilton's principle. 1+7=8
 (b) Formulate the Hamiltonian and the Hamilton's equations of motion for a simple pendulum. 3+3=6
- 4. (a) A particle is constrained to move on the surface of a transparent cylinder such that it is directed towards the origin and proportional to the distance of the particle from the origin. Formulate the Hamiltonian and the Hamilton's equations of motion.
 - (b) Calculate the Hamiltonian for a charged particle in an electromagnetic field.

UNIT-III

5. (a) Explain with necessary diagrams about stable and unstable equilibrium. Write two differences between them.
 4+2=6

(b) Consider a two-coupled oscillator to show that the motion of each coordinate is a superposition of two harmonic vibrations.

8

10

4

4

- 6. (a) A uniform bar of length *L* and mass *m* is supported at the ends by identical springs of elastic constants *k*. Solve the problem of motion by identifying the normal modes if the motion is initiated by depressing one end by a small distance *a* and releasing it from rest.
 - (b) A particle of mass 8 kg is moving in the potential

 $v(x) = \frac{1}{2}ax^2 + \frac{1}{4}bx^2$. Calculate the linear frequency of small oscillation about the point of stable equilibrium.

UNIT-IV

7.	(a)	Write two postulates of the special theory of relativity.	2
	(b)	Derive the Lorentz transformation equation and the Lorentz	
		transformation of space and time in four vector form.	8+4=12
8.	(a)	Explain Minkowski space, world point, world line, space lik	e, time
		like, light like and space-time diagram.	10
	(b)	A spacecraft is contracted to 50 percent of its initial length.	What is
		the speed of the spacecraft?	4

UNIT-V

- 9. (a) Discuss in detail the relativistic effect of Doppler's effect of light waves. Explain further the blue and red shift in relativistic Doppler effect.
 - (b) Derive the equation of continuity for liquid.
- 10. (a) Define the rate of flow of a liquid. Derive an expression for the rate of flow of a liquid. 1+3=4
 - (b) Deduce the Poiseuille's equation for flow of a liquid through a pipe. 6
 - (c) Calculate the rate of flow of two capillaries of diameters 0.2 mm and 0.4 mm having lengths 100 m and 400 m respectively set in series with a constant pressure head of 20 cm of water (coefficient of viscosity of water is 0.0089 C.G.S. unit).