2021 B.A./B.Sc. Fifth Semester CORE – 12 PHYSICS Course Code: PHC 5.21 (Solid State Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

3

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) A beam of X-ray is reflected from the (111) plane of an S.C. lattice with wavelength $\lambda = a$. If a is the lattice, find the Bragg angle. 2
 - (b) Derive Bragg's law of X-ray diffraction, clearly stating the underlying assumptions. 5
 - (c) Explain the procedure to draw Brillouin zone and hence draw 1st, 2nd and 3rd Brillouin zone.
 7
- 2. (a) Find the Miller indices of crystal planes which cut through the axes at (6a, 3b, 2c).
 3
 - (b) What is reciprocal lattice? Discuss its importance in solid state physics.1+3=4
 - (c) A plane makes intercepts at 1, 2 and 1 for a cubic crystal with lattice parameter 0.5Å. Determine the inter-planar spacing of it. Show that the set of reciprocal lattice vectors G determines the possible X-ray reflections. 2+5=7

UNIT-II

3. (a) Show that, for low frequencies, phase velocity is equal to group velocity in a 1-D monoatomic lattice.

(b) What is a phonon? Give evidence for the existence of phonons.

1+3=4

(c)	Define density of modes. Hence, find an expression to find the	e total
	number of vibrational modes	1+6=7

4.	(a) Calculate Debye's frequency for copper, if it has Debye's	
	temperature of 42°C.	2
	(b) Determine the direction of atoms for optical branch in a diatomic	
	lattice.	5
	(c) Discuss Debye's model of lattice heat capacity.	7

UNIT-III

5.	(a)	If an unknown material is found to have magnetic permeability	
		$4\pi \times 10^{-3}$ H/m, identify the type of magnetism associated with it.	2

- (b) In an iron bar magnet of cross-section $2 mm^2$, a magnetic intensity of $1.2 Am^{-1}$ produces a magnetic flux of 3.2×10^{-5} weber. Calculate the permeability and susceptibility of the iron.
- (c) Discuss the Weiss theory of ferromagnetism and explain how magnetic susceptibility varies with temperature.
- 6. (a) What is superconductivity? Explain Meissner effect. Describe type-I and type-II superconductors. 1+3+3=7
 - (b) Mercury has critical temperature of -269°C at zero magnetic field and a critical field of 0.33 MAm⁻¹ at absolute zero. Find the critical field at -266°C.
 - (c) Explain the concept of penetration depth with the help of London's equation.

UNIT-IV

 (a) Derive the general expression of Clausius-Mossotti relation for dielectric constant

3

8

- (b) The atomic weight and density of sulphur are 32 and 2.08 gm/cm^3 respectively. The electronic polarizability of the atom is 3.28×10^{-40} Fm^2 . If sulphur solid has cubic symmetry, what will be its relative permittivity?
- (c) Derive the mathematical expression to explain the dominance of imaginary dielectric constant at certain frequencies in dispersion of solids.
- 8. (a) For an atomic site of cubic symmetry, a solid contains 1×10^{30} atoms per unit volume. Find the ratio of local field to the external field if the polarizability is $13.25 \times 10^{-42} Fm^2$.
 - (b) Find the frequency of positive and negative charges with the negative charge fluctuating about its equilibrium position. 4
 - (c) Discuss Langevin-Debye relation in dielectrics and the significance of real and imaginary parts of dielectric constants.
 7

UNIT-V

9. What are ferroelectricity, piezoelectricity and pyroelectricity? What are the different groups of ferroelectric crystals? Derive the temperature dependence of the dielectric constant of the ferroelectric crystal.

3+4+7=14

3

4

10. (a) Calculate the Hall coefficient of sodium based on free electron model. Sodium has *BCC* structure and the side of the cube is 4.2Å

(b) Derive the relation $\sigma = en_i(\mu_n + \mu_p)$. Symbols have their usual meanings.

(c) How does the introduction of Kroning-Penny type of periodicpotential explain the occurrence of bands and band gaps in solids? 7