2021 B.A./B.Sc. Fifth Semester CORE – 12 MATHEMATICS Course Code: MAC 5.21 (Group Theory - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Define automorphism of a group. Prove that the set of all	
		automorphisms of a group forms a group with respect to composite	
		of functions as the composition.	6
	(b)	If G is an infinite cyclic group, determine the group of automorphism	ıs
		of G.	4
	(c)	If G is a group, f an automorphism of G and N a normal subgroup of	of
		G, prove that $f(N)$ is a normal subgroup of G.	4
2.	(a)	Define inner automorphism and prove that the set of all inner automorphisms of a group is a normal subgroup of the group of its	
		automorphism.	5
	(b)	If G' is the commutator subgroup of a group G , prove that G' is	
		normal in G and G/G' is abelian.	5
	(c)	Define characteristic subgroup of a group. Show that a characteristi	С
		subgroup of a group G is a normal subgroup of G . Is the converse	
		true?	4
		IINIT II	

UNIT-II

3. (a) Show that the external direct product $G_1 \times G_2$ is a group for the binary operation defined by $(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2h_2)$, where

 $g_1, h_1 \in G_1$ and $g_2, h_2 \in G_2$.

5

	(b) Find the number of elements of order 5 in $Z_{25} \oplus Z_5$.	4
	(c) Show that a group of order 4 is either cyclic or is an internal direct product of two cyclic groups of order 2 each.	5
4.	 (a) If G₁ and G₂ are any two groups, show that G₁×G₂ is abelian if and only if both G₁ and G₂ are abelian. (b) If G is an internal direct product of its subgroups H and K, prove 	l 5
	that $H \cap K = \{e\}$ and that G is isomorphic to the external direct	
	product of <i>H</i> and <i>K</i> .	5
	(c) Find all the non-isomorphic abelian groups of order 360.	4

UNIT-III

5.	(a) Define group action and explain group action by conjugation.	4
	(b) Define kernel of a group action and prove that it is a subgroup of	of the
	group.	5
	(c) State and prove the index theorem.	5

6. (a) If G is any group and A is a non-empty set, prove that any homomorphism from G to S_A , the symmetric group of A defines an action of G on A. Also, prove the converse. 6

(b) If G is a group and $a \in G$, define stabilizer of a in G and prove that it is a subgroup of G. 4

(c) If G is a group and A is any non-empty set, prove that
 *: G × A → A defined by g*a = a, ∀a ∈ A, g ∈ G, is a group action.

4

UNIT-IV

7.	(a) Let G be a group and ~ the relation in G given by $b \sim a$ if and only i	f
	b is conjugate to a. Show that \sim is an equivalence relation.	5
	(b) Find all the conjugate classes in S_3 and verify the class equation.	5
	(c) Obtain the class equation for a finite group.	4
8.	(a) If G is a group, prove that the number of elements in the conjugate	;

class cl(a), where $a \in G$, is equal to the index of the normalizer N(a)

of <i>a</i> in <i>G</i> . (b) Find all the conjugate classes in S_4 and verify the class equation.	5 5
(c) If G is a group and $a \in G$, prove that $cl(a) = \{a\}$ if and only if	
$a \in Z(G)$, where $Z(G)$ is the centre of G.	4

UNIT-V

9.	(a)	State and prove Cauchy's theorem for finite groups.	6
	(b)	Prove that there are no simple groups of order 63.	4
	(c)	If the order of a group G is p^2q^2 , where p and q are distinct prime,	
		show that G is not simple.	4
10.	(a)	Prove that any group of order 15 is cyclic, using Sylow's theorem.	5
	(b)	Prove that the alternating group A_5 is simple.	6
	(c)	Prove that a Sylow p -subgroup H of a group G is normal if H is the	2
		unique sylow <i>p</i> -subgroup of <i>G</i> .	3