2021 B.A./B.Sc. Fifth Semester CORE – 12 CHEMISTRY Course Code: CHC 5.21 (Physical Chemistry - V)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Define the following terms:	$1 \times 3 = 3$
		(i) Activity coefficients	
		(ii) Mean activity coefficients	
		(iii) Ionic strength	
	(b)	Write a note on liquid junction potential.	3
	(c)	Explain with the help of a neat diagram the electrophoretic effe	ct. 5
	(d)	The resistance of a $0.02 \text{ mol } \text{dm}^3$ solution of acetic acid (cell constant = 0.2063 cm^{-1}) was found to be 888 ohm. What is the	ie
		degree of ionization of the acid at this concentration?	3
		(Given Λ° for acetic acid = 387.9 × 10 ⁻⁴ ohm mol ⁻¹ m ²)	
2.	(a)	Discuss the concentration cells with transference.	6
	(b)	Calculate the ionic strength of	2
		(i) 0.02 molal KCl	
		(ii) $0.05 \text{ molal BaCl}_2$	
	(c)	Write notes on:	2×2=4
		(i) Walden's rule	
		(ii) Debye-Falkenhegen effect	
	(d)	The specific conductance of saturated solution of AgCl at 25°C subtracting.	Cafter 2
		-	

UNIT-II

3.	 (a) State the criterions of a reversible electrode. (b) Explain the Gouy-Chapmann model of diffuse double layer. (c) Define EMF of a cell. Show how EMF measurements can be used in determining (i) free energy (ii) enthalpy (iii) entropy of a cell reaction.
4.	 (a) Determine the EMF and equilibrium constant of a cell reaction. (b) Explain the working of calomel electrode and prove that it is a reversible electrode. (c) Show how to determine the pH/H⁺ concentration of a solution by EMF measurement using hydrogen electrode. 5
	UNIT-III
5.	(a) Explain the molecular orbital treatment of H_2^+ .7(b) Write short notes on $2 \times 2=4$ (i) anharmonicity(ii) bonding and antibonding orbitals

- (c) Give the comparison of LCAO–MO and VB treatments of H_2 . 3
- 6. (a) Derive the expression for valence bond energy of H₂ in terms of various integrals.
 (b) E = 1 is d = i
 - (b) Explain the importance of approximation methods. 4
 - (c) Write a short note on need for modification of Schrodinger equation for many electrons atoms. 4

UNIT-IV

7.	(a) Show that the electronic transition possesses both vibrational and
	rotational fine structures. 5
	(b) What do you understand by electronic transition? Explain in detail. 5
	(c) Write short notes on: $2 \times 2=4$
	(i) Fluorescence
	(ii) Phosphorescence

8. (a) Discuss the high resolution NMR spectrum of acidified ethanol. 6

- (b) What is chemical shift? Explain how tetramethyl silane is used for measuring chemical shift.
- (c) A compound shows a proton NMR peak at 240 Hz downfield from the TMS peak in a spectrometer operating at 60 MHz. What are the values of the chemical shift δ and τ in ppm relative to TMS? 3

5

UNIT-V

9. (a) State and explain Lambert-Beer's law. Also give its limitations.

1 + 3 + 1 = 5
3×2=6
um yield.
1+2=3
4
ns in
5
valence. 5