2021

B.A./B.Sc. Fifth Semester CORE – 11

PHYSICS

Course Code: PHC 5.11 (Quantum Mechanics & Applications)

Total Mark: 70 Time: 3 hours Pass Mark: 28

2

7

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) State and prove the Cauchy-Schwarz inequality.5(b) Are the vectors $X_1 = (1,0,0), X_2 = (0,1,0), X_3 = (0,0,1)$ linearly
dependent?2
 - (c) Define eigenvectors and eigenvalues. Find the eigenvalues and

eigenvectors of matrix
$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$
 7

2. (a) Prove that $C\langle X | Y \rangle = \langle CX | Y \rangle$

- (b) Check whether the given set of vectors $X_1 = (1,2,1)$ and $X_2 = (2,1,4)$ are orthogonal. If they are not orthogonal, construct an orthogonal set of vectors. 5
- (c) What is diagonalisation of matrix? Explain the theorem on diagonalisation of a matrix.

UNIT-II

3.	(a)	Define operator. Show that the eigenvalues of Hermitian operator	
		are real.	5
	(b)	Prove that $[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0.$	4
	(c)	Show that an operator representing any two components of the	

	orbital angular momentum do not commute.	5
4.	(a) Prove that $[L_z, y] = -i\hbar x$	4
	(b) Show that the ladder operator L_{+} increases the eigenvalue of	
	operator L_z by \hbar .	3
	(c) Explain the concept of parity. Show that eigenvalues of parity	
	operators are $+1$ and -1 .	7

UNIT-III

5.	(a)	Write a note on uncertainty principle. Give different forms of				
		uncertainties.	5			
	(b)	Calculate the maximum kinetic energy of a photoelectron (in eV)				
		emitted, if incident light of wavelength 6.2×10^{-6} m falls on a metal				
		surface. The work function of the metal is 0.1 eV.	3			
	(c)	What is Compton effect? Illustrate how this phenomenon could be				
		explained using the quantum theory of radiation.	6			
_						
6.	(a)	Discuss how classical approaches failed to account for the spectral				

6.	(a)	Discuss how classical approaches failed to account for the spectral					
		distribution of energy density in the blackbody radiation. How did					
		Planck's theory overcome this difficulty?	5				
	(1)						

- (b) Find the longest and the shortest wavelengths of the Lyman series. Given Rydberg constant $R=1.097 \times 10^7 \text{ m}^{-1}$.
- (c) Define specific heat capacity. Explain Einstein theory of specific heat of solids.

UNIT-IV

7.	(a)	Find the ex	xpectation	value of p	position	and mon	nentum w	hose wave
-			1	1	L			

function is
$$\psi(x) = Ae^{\frac{x^2}{2S^2}} + ikx$$
 5

5

4

- (b) Obtain Schrodinger's time independent equation from time dependent equation.
- (c) State and explain any four postulates of quantum mechanics.
- 8. (a) What are the continuity and boundary conditions that must be

satisfied for a wave function to be physically acceptable?

4

10

8

8

(b) State and prove Ehrenfest's theorem.

UNIT-V

- 9. (a) Calculate the three lowest energy levels (in eV) for an electron inside a one-dimensional infinite potential well of width 2Å. Given mass of electron $m = 9.1 \times 10^{-31}$ Kg, $\hbar = 1.05 \times 10^{-34}$ Js. 3
 - (b) The restoring force constant K for the vibrations of the inter-atomic spacing of the diatomic molecules is 10^3 J/m². If mass of the molecule is 4.9×10^{-26} kg, estimate the zero point energy of the oscillator. 3
 - (c) Obtain the energy eigenvalues and the normalized eigenfunctions for a particle in a one-dimensional infinite square well.
- 10. (a) What do you mean by tunneling through a barrier? A particle travelling with energy *E*>0, has a potential barrier defined as

$$V = \begin{cases} 0 & x \le 0 \\ V_0 & 0 < x < a \\ 0 & x \ge 0 \end{cases}$$

Obtain formulae for the transmission coefficient and reflection coefficient.

(b) Using ground state function of the simple harmonic oscillator, show

that the ground state energy is
$$\frac{1}{2}\hbar\omega$$
. 6