2021 B.A./B.Sc. **Third Semester** GENERIC ELECTIVE **PHYSICS** Course Code: PHG 3.11 (Elements of Modern Physics)

PART-B

Total Mark: 30

Answer the following questions.

1.	. ,	Prove that in the photo-electric effect from a metal surface, the maximum velocity of the photo- electrons is related to the stopping potential by the equation $V_{\text{max}} = 5.927 \times 10^5 \sqrt{V_0}$ where V_{max} is in <i>m/sec</i> . and V_0 is in volts. Show that the de Broglie wavelength associated with an electron of energy <i>V</i> electron-volts is approximately $1.227/\sqrt{V}$ nm.	3
2.		State any two postulates of quantum mechanics. Find the normalization constant of the particle described by the Gaussian wave packet wave function $\psi(x) = Ae^{\frac{\alpha^2 x^2}{2}}e^{ikx}$.	2
3.		Find the lowest energy of a neutron confined to a nucleus of size $10^{-14}m$. Given mass of neutron is $1.67 \times 10^{-27} kg$. Derive an approximate expression for the transmission coefficient for a rectangular potential barrier for which $\frac{a}{\hbar\sqrt{2m(V_0 - E)}} \gg 1$	3
4.	. ,	A hydrogen atom is $5.3 \times 10^{-11} m$ in radius. Use the uncertainty principle to estimate the minimum energy an electron can have in this atom. Life time of a nucleus in the excited state is $10^{-12} s$. Calculate the probable uncertainty in energy and frequency of a γ -ray photon emitted by it.	3
5.	. ,	The half life of radon is 3.8 days. After how many days will 1/10 of a radon sample remain behind? Polonium 212 amits alpha particles whose kinetic apergy is 10.54 MeV Determine the alpha	3

- (b) Polonium-212 emits alpha particles whose kinetic energy is 10.54 MeV. Determine the alpha disintegration energy.
 - 3